Multi-source Spatiotemporal Tracking using Sparse Large Aperture Arrays

Y. I. Kamil, Member, IEEE, and A. Manikas, Senior Member, IEEE.

Abstract—In this paper, a multi-source tracking technique is proposed using a sparse large aperture array of passive sensors of known geometry. A novel state space model is introduced utilising the concept of the spatiotemporal manifold vector in conjunction with spherical wave propagation incorporating target ranges, directions and Doppler effects. Subsequently, a space-time approach to track multiple mobile sources is presented based on the Extended Kalman Filter (EKF), defined as the Arrayed EKF. In addition, a recursive lower bound on the performance of the proposed tracking method is obtained based on the Posterior Cramer-Rao Bound (Posterior CRB). Computer simulation studies show that the proposed approach can track the locations of sources with a high accuracy, even in some difficult tracking situations where traditional algorithms fail such as when the trajectory of sources cross.

Index Terms—Array Processing, Tracking, Extended Kalman Filter, Posterior Cramer-Rao Bound

I. INTRODUCTION

MULTIPLE source/target tracking is an important element of any surveillance and monitoring system that is required to incessantly monitor the spatial features of sources. For example, tracking the trajectories of multiple sources can assist in effectively managing their resources in space [1]. Other applications include air traffic control [2], missile defence [3], asset tracking [4], mobile communications [5] and wireless sensor networks [6][7].

Intuitively, the problem of tracking multiple sources can be solved by dividing the tracking period into sufficiently small time intervals over which sources can be assumed to be stationary. In this case, the tracking problem can be solved as a recursive localization problem. Here, location estimates made in a given time interval by employing any high resolution localization algorithm are propagated to the next interval to provide initial location information of the sources current position. However, in general, localization algorithms don’t account for source mobility. As a result they will begin to exhibit poor performance in the presence of fast moving sources when it can no longer be assumed that the source is stationary over the observation interval due to the spread spatial spectrum created by the source motion [8]. An alternative approach to tracking in the literature is to introduce a state space model to represent target motion dynamics. Using the state space model, various Bayesian approaches are employed to estimate the locations of targets on a snapshot by snapshot basis [9][10]. These algorithms provide a better performance at the cost of an increased computational complexity.

Another issue in source tracking is concerned with the multi-source case in determining which location estimates correspond to which source over the different observation intervals. If there are M targets and M corresponding direction estimates, there will be $M!$ possible combinations in which these can be assigned to one another. This is known as the association problem. Several approaches in the literature have been developed to tackle this issue. Standard methods involve searching over all possible combinations [11]-[14]. However, these methods are clearly prohibited by their large computational complexity. Other methods avoid the association problem, providing a natural assignment of direction estimates to sources. This is achieved for example by assuming that that distinct transmit powers can be used to identify the sources over the tracking period [15][16]. However, this assumption is

1Note that, in this paper, the terms “transmitters”, “emitters”, “sources” and “targets” are considered equivalent and are used interchangeably.

NOTATION

A, a Scalar
\mathbf{A}, \mathbf{a} Column vector
\mathbf{A}_n, \mathbf{a}_n Matrix
$(\cdot)^T$, $(\cdot)^H$ Transpose, Hermitian transpose
\odot, \oslash Hadamard product, division
\otimes Kronecker product
\otimes Khatri-Rao row-wise product
$\exp(\mathbf{A})$ Element by element exponential of the vector \mathbf{A}
\mathbf{A}^b Element by element power of the vector \mathbf{A}
$|\mathbf{A}|$ Absolute value of the complex scalar \mathbf{A}
$||\mathbf{A}||$ Euclidian norm of the vector \mathbf{A}
$\mathcal{E}\{\cdot\}$ Expectation operator
$\text{vec}(\mathbf{A})$ Vectorization of the matrix \mathbf{A} by stacking its columns
\mathbb{I}_N Identity matrix of dimensions $N \times N$
$\mathbf{1}_N$ Column vector of N ones
\mathbb{R} set of real numbers
\mathbb{C} set of complex numbers

Manuscript received ??; revised ?? . This work was supported by the Data & Information Fusion Defence Technology Center (DIF DTC) UK, under the project “Mobile Sentinel Wireless Sensor Networks”. Y. I. Kamil was with Imperial College London and is now with WesternGeco Ltd., Schlumberger House, Buckingham Gate, Gatwick, RH6 0NZ United Kingdom (email: YIzzeldin@slb.com). A. Manikas is with the Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK (email: a.manikas@imperial.ac.uk).
not realistic in many practical scenarios.

Regardless of the tracking algorithm used, one would intuitively expect degradation in the tracking performance where the DOA trajectories of sources cross. This is a well-documented problem discussed in [8][9][10] and can frequently happen in practical scenarios since the DOAs of sources can be equal even though their trajectories are not actually crossing (i.e. they are at the same direction but different ranges). Moreover, most of the approaches in the literature do not consider the Doppler effects of the moving sources which can provide valuable information about their radial velocities.

This paper is concerned with the multiple source tracking problem which is solved using a large aperture array of passive sensors with known geometry connected with fiber, wire line or wireless links. Note that this is distinctly different to the active tracking approaches discussed extensively for example in the "radar" literature. For instance, in [17], a multi-target tracking approach is proposed that employs a radar network that uses a new particle-filter tracking method with global feedback. MIMO radar is also an “active” echo tracking system where a number of Tx-antennas transmit independent but known signals and the Rx-antennas receive the various echoes. For example, in [18], Bayesian estimators (including Kalman and "particle" filters) are proposed for tracking in MIMO radar. Note that both [17] and [18] use underlying statistical models that are different from the array processing modelling proposed in this paper. Furthermore, in [19] MIMO radar that employs multiple, spatially distributed transmitters and receivers is presented. In particular, high resolution target localisation using MIMO radar with widely separated antennas is investigated - under the assumption that transmitted waveforms are orthogonal and that orthogonality is maintained even for different mutual delays. Note that [19] is concerned with target detection and localisation and the tracking problem can be solved as a recursive localization problem.

In this paper, under a large array aperture, it can be assumed that sources will lie in the near-far field of the array and hence undergo a spherical wave rather than a plane wave propagation model. In this case, the spherical wave manifold vector describes the array response and is a function of range as well as direction. The Doppler effects of moving sources are also considered by employing a Tapped Delay Line (TDL) at each array element. This allows the concept of the spatiotemporal spherical wave manifold to be developed. Based on this spatiotemporal manifold, a state space model is derived and used in conjunction with an Arrayed Extended Kalman Filter (Arrayed EKF) to track the range and direction of the targets. The advantage of this approach is threefold. Firstly, the dynamics governing the motion of sources can be incorporated in the tracking algorithm as prior knowledge of the state vector which can, therefore, improve the estimation accuracy. Secondly, since the Arrayed EKF depends on a single snapshot rather than constructing a sample covariance matrix, the required computation is relatively low and the adaptation to moving sources is fast. Therefore, the proposed algorithm can even be considered as suitable to wireless sensor networks which are characterized by their stringent requirement of computational power-efficiency. Finally, the proposed approach avoids the association problem because the recursive nature of the state space model preserves the natural ordering of the source locations.

In time invariant statistical models, a commonly used lower bound is the Cramer-Rao bound (CRB), given by the inverse of the Fisher information matrix [20]-[23]. This places a lower bound on the variance of any unbiased parameter estimator. If the state vector in the state space model is random, a lower bound that is analogous to the CRB can be used for similar time varying statistical systems [24]. This bound is usually referred to as the Posterior CRB. In this work, the Posterior CRB matrix is derived and some interesting properties of it are established.

The remainder of this paper is organized as follows: In Section II, a novel formulation of the multi-source tracking problem is presented using a large aperture array of passive sensors. Here, the received signal vector is modelled using the concept of the spatiotemporal manifold vector under spherical wave propagation leading to a novel state space model being derived. In Section III, the Arrayed Extended Kalman Filter (Arrayed EKF) is applied to this state space model to track multiple sources in the near-far field of the array. Following this, in Section IV, the Posterior CRB for the proposed spatiotemporal tracking approach, describing the lower bound on its performance, is formulated. In Section V, computer simulation studies are presented showing the performance of the proposed algorithm. The paper is concluded in Section VI.

II. Problem Formulation

Consider a fully calibrated large aperture sparse array of \(N \) passive sensors with locations in Cartesian coordinates given by the matrix \(\mathbf{r} \in \mathbb{R}^{3 \times N} \) with respect to the system origin. That is

\[
\mathbf{r} = [r_1, r_2, \ldots, r_N] = [r_x, r_y, r_z]^T
\]

where \(r_i \in \mathbb{R}^{3 \times 1} \) for \(i = 1, 2, \ldots, N \) denotes the location of the \(i^{th} \) element in the array and \(r_x, r_y, r_z \in \mathbb{R}^{N \times 1} \) denote the vectors describing the \(x, y \) and \(z \) coordinates of the array elements. Without loss of generality, assume the first array sensor is located at the array reference point (i.e., \(r_1 = [0, 0, 0]^T \)). Consider that the array operates in the presence of \(M \) narrowband sources/targets/transmitters with common carrier frequency \(f_c \) where the \(i^{th} \) source transmits an unknown message signal \(m_i(t) \) defined as

\[
m_i(t) = \sum_{k=-\infty}^{\infty} m_i[k]c(t - kT_{cs})
\]

where

\[
kT_{cs} \leq t < (k + 1)T_{cs}
\]

Here, \(m_i[k] \forall k \in \mathbb{N} \) is a data stream of random channel symbols with zero mean and unity variance. The symbol duration is denoted by \(T_{cs} \) and \(c(t) \) denotes the pulse shaping waveform. It is assumed that different symbols in the data stream are completely uncorrelated such that

\[
\mathcal{E} \{ m_i[p]m_i[q] \} = \delta_{pq}
\]
The unknown message $m_i(t)$ of Equation 2 is shown at point A in Figure 1. This figure shows the SIMO (single-input multiple-output) wireless channel associated with the i^{th} source/target where its Tx is located at $x_{Ti}(t)$ (see point B). Note that $x_{Ti}(t)$ is a time varying function with azimuth $\theta_i(t)$, elevation $\phi_i(t)$ and range $\rho_i(t)$ measured with respect to the array reference point. That is,

$$x_{Ti}(t) = \rho_i(t) \hat{u}(\theta_i(t), \phi_i(t)) \in \mathbb{R}^{3 \times 1}$$ \tag{5}

Furthermore, $\theta_i(t)$ is measured anticlockwise with respect to the positive x-axis. In Equation 5,

$$u_i(t) = \hat{u}(\theta_i(t), \phi_i(t)) = \begin{bmatrix} \cos \theta_i(t) \cos \phi_i(t) \\ \sin \theta_i(t) \cos \phi_i(t) \\ \sin \phi_i(t) \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$ \tag{6}

denotes the unity norm vector pointing towards the direction of the target $(\theta_i(t), \phi_i(t))$. The wavenumber vector $\mathbf{F}_\nu(t) \in \mathbb{R}^{3 \times 1}$ which also points towards the direction $(\theta_i(t), \phi_i(t))$ can then be defined as,

$$\mathbf{F}_\nu(t) = \frac{2\pi F_c}{c} \mathbf{u}_i(t)$$ \tag{7}

where c is the propagation velocity of the transmitted signal. In this paper it is assumed with no loss of generality that the array elements and sources lie in the same \mathbb{R}^2 space (i.e. $x_z = 0_{2N}$ and $\phi_1(t) = 0$). In addition, it is assumed that the targets move at a constant speed over a given observation interval subject to minor Brownian disturbances [9] acting on their heading directions. Finally, it is assumed that the array aperture is sufficiently large such that the targets lie in the near-far field of the array and thus undergo spherical wave propagation.

In this section a Spatiotemporal Observation Model is first derived to relate the signals received at the array to the unknown parameters (e.g. the source location) and the large aperture array geometry. Following this, a novel spatiotemporal state space model is presented that incorporates the observation model as well as the dynamics governing the motion of sources in the estimation process. These two models (observation and state space model) form the basis of the novel Arrayed EKF tracking algorithm presented in Section II-B.

2Since the array of sensors has a "large aperture", which is defined as the largest distance between any two elements in the array, the proposed model utilizes spherical wave propagation in conjunction with the spatiotemporal array response (spatiotemporal array manifold vector).
white Gaussian noise with covariance matrix
\[\mathbb{E}_{nn} = \sigma_n^2 \mathbb{I}_N \in \mathbb{C}^{N \times N} \]
(9)
where \(\sigma_n^2 \) denotes the noise power. However, it should be noted that the assumption of spatially white noise is not a restriction on the proposed approach providing the noise covariance can be found (up to an unknown scalar). Furthermore, the vector \(\mathbf{m}_i(t) \in \mathbb{C}^{N \times 1} \) is defined as
\[\mathbf{m}_i(t) = [m_i(t - \tau_{1i}), m_i(t - 2\tau_{1i}), \ldots, m_N(t - \tau_{Ni})]^T \]
(10)
where \(m_i(t - \tau_{ki}) \) denotes the message signal received by the \(k^{th} \) array element and is a delayed version of the message signal \(m_i(t) \). Note that if the message signal is slow varying as it propagates through the array (i.e. narrowband assumption) then
\[\mathbf{m}_i(t) = m_i(t - \tau_1) \mathbb{I}_N \]
(11)

The time varying array response vector \(\mathbf{S}_i(t) \) can be expressed using the spherical wave array manifold vector. Dropping the parameter \(t \) for notational convenience and assuming omnidirectional array elements,
\[\mathbf{S}_i(t) = \rho_1^a \cdot \rho_i^a \odot \exp \left(-j \frac{2\pi F_c}{c} \left(\rho_i \mathbb{I}_N - \rho_1 \right) \right), \quad (12) \]
where \(a \) is the path loss exponent (assumed known) and \(\rho_i \) (see Figure 2) describes the range from the \(i^{th} \) target to the array reference point, i.e. the first array element. Furthermore, \(\rho_i \in \mathbb{R}^{N \times 1} \) is related to the unknown range \(\rho_i \) and direction \(\theta_i \) of the emitting source with respect to the array reference point and the known array geometry as
\[\rho_i = \sqrt{\rho_1^2 \cdot \mathbb{I}_N + \mathbf{r}_x^2 + \mathbf{r}_y^2 + \mathbf{r}_z^2 - \frac{\rho_1 c}{F_c} \left[\mathbf{r}_x, \mathbf{r}_y, \mathbb{I}_N \right]^T \mathbf{k}(\theta_i)}. \]
(13)

Note that in Equations 12 and 13, \(\rho_i \) and \(\theta_i \) are functions of time \(t \). In this section, the parameter \(t \) has been dropped from \(\rho_i \) and \(\theta_i \) for notational convenience.

With reference to Equation 8, the vector \(\mathbf{E}_x(t) \) models the effect of Doppler shift due to the velocity vector of the \(i^{th} \) target \(\mathbf{v}_i \in \mathbb{R}^{3 \times 1} \) and can be expressed as
\[\mathbf{E}_x(t) = \exp \left(j \frac{2\pi F_c}{c} t \left(\rho_i \mathbb{I}_N - \left[\mathbf{r}_x, \mathbf{r}_y, \mathbb{I}_N \right] \mathbf{v}_i \right) \right) \odot \rho_i^{-1} \]
(14)
where \(\mathbf{v}_i \) denotes the radial velocity of the target. With reference to Figure 2, the velocity vector \(\mathbf{v}_i \) can be split into its radial component denoted by \(\mathbf{v}_{r,i} \in \mathbb{R}^{2 \times 1} \) as well as its orthoradial component denoted by \(\mathbf{v}_{\theta,i} \in \mathbb{R}^{2 \times 1} \) as
\[\mathbf{v}_i = \mathbf{v}_{r,i} \mathbb{I}_{2 \times 1} + \mathbf{v}_{\theta,i} \mathbb{I}_{2 \times 1} \]
(15)
noting that \(\mathbf{v}_{r,i} \) is a unity norm vector. Note that the vector \(\mathbf{E}_x(t) \) is a function of the range \(\rho_i \) and direction \(\theta_i \) of the emitting source with respect to the array reference point as well as the array geometry.

With reference to Figure 3, now consider that the \(N \)-dimensional received signal vector \(\mathbf{z}_i(t) \) is sampled at point D with a period \(T_s \) and passed through a bank of \(N \) tapped delay lines (TDLs). Consider that each TDL has a length \(N_s \) where \(T_{cs} = N_s T_s \). The output of the TDLs are concatenated and sampled with a period \(N_s T_s \) to create the discretized signal vector \(\mathbf{z}_i[k] \in \mathbb{C}^{N_s \times 1} \) at point E (see Figure 3) expressed as
\[\mathbf{z}_i[k] = \left[\mathbf{z}_i^T[k], \mathbf{z}_i^T[k], \ldots, \mathbf{z}_i^T[k] \right]^T \]
(16)
where \(\mathbf{z}_i[k] = \mathbf{z}_i(k T_{cs}) \in \mathbb{C}^{N_s \times 1} \) is the output from the \(k^{th} \) array element TDL. The discretized signal vector \(\mathbf{z}_i[k] \) can be modelled, under the "wideband" (WB-A) or "narrowband" (WB-A) assumption, as...
where \(h_i[k] = h (\rho_i, v_{\rho_i}, \theta_i, v_{\theta_i}) \in \mathbb{C}^{N_x \times 1} \) is defined as the Spherical Spatio-Temporal ARray (Spherical STAR) manifold vector due to the \(i^{th} \) target transmission. This is a function of the array geometry (known) and the unknown time varying source parameters which are defined by the vector \(\bar{z}_i[k] \in \mathbb{R}^{4 \times 1} \) where

\[
\bar{z}_i[k] = [\rho_i[k], v_{\rho_i}[k], \theta_i[k], v_{\theta_i}[k]]^T
\]

For the remainder of this section, the time parameter \(k \) will be dropped from the notation of these source parameters (given in Equation 18) for notational convenience. Thus, in Equation 17, the vector \(\bar{h}_i[k] \) can be modelled as

\[
\bar{h}_i[k] = (\bar{S}_i \otimes 1_{N_x}) \odot \bar{F}_i[k].
\]

Here, \(\bar{S}_i \) is the spherical wave manifold vector defined in Equation 12 which in this paper is assumed to change at a much slower rate than the vector \(\bar{F}_i \) such that \(\bar{S}_i \) can be considered to be fixed over a given observation interval. In addition, \(\bar{F}_i[k] \in \mathbb{C}^{N_x \times 1} \) encompasses the discretized effect of Doppler shift and is given by

\[
\bar{F}_i[k] = vec \left(\begin{bmatrix} F_i(1), F_i(2), \ldots, F_i(N_x) \end{bmatrix}_{N \times N_x} \right)^T
\]

which is a function of discretized time. Note that when the \(i^{th} \) source is in the far field of the array, the vector \(\bar{F}_i[k] \) is no longer a function of the source range, direction and the array geometry. In this case, the Spherical STAR vector is reduced to a similar structure to that of the Space-Time-Doppler (STD) manifold vector introduced\(^3\) in [25].

Some applications of this model include battlefield communications and cellular communications. In the former, sensor nodes operating as a wireless array can be attached to vehicles or human beings (e.g. soldiers) to enable parasitic mobility, controlled solely by the attached mobile hosts. In the latter it is useful for tracking mobile sources/signals. For instance, using a number of base stations as a large aperture array and transmitting messages from these mobile sources, the problem of locating and tracking these sources is inherently a near-field problem that requires successive estimation of range and bearing angles.

\(^3\)With the exception that the information signal here is not assumed to have any special temporal characteristics while in [25] the signal is assumed to be a DS-CDMA signal.

\[WB-A : \quad \bar{z}_i[k] = h_i[k] \odot (m_i[k] \otimes 1_{N_x}) + n[k] \quad (17a)\]

\[NB-A : \quad \bar{z}_i[k] = \bar{h}_i[k]m_i[k] + n[k] \quad (17b)\]
which carries all the kinematic characteristics of the target. A suitable discrete time kinematic model for \(t = kT \) is
\[
\tilde{z}_{k|i} = F_i \tilde{z}_{(k-1)|i} + w_{k|i}
\] (27)
where the state matrix \(F_i \in \mathbb{R}^{4 \times 4} \) is defined as
\[
F_i = \begin{bmatrix}
1 & T & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & T \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (28)
and the error vector \(w_{k|i} \) accounts for random perturbations about the constant velocity trajectories. These perturbations can be seen as acceleration modelled as uncorrelated noise of zero mean with covariance matrix given by
\[
Q_i = \begin{bmatrix}
\frac{T^3}{3} & \frac{T^2}{2} & 0 & 0 \\
\frac{T^2}{2} & T & 0 & 0 \\
0 & 0 & \frac{T^3}{3} & \frac{T^2}{2} \\
0 & 0 & \frac{T^2}{2} & T
\end{bmatrix}
\] (29)
where \(q_{p_i}^2 \) and \(q_{q_i}^2 \) denote the continuous time model process noise intensity for the range and direction respectively. The choice of small intensities approximates a nearly constant velocity model. Since the model is discretized, intensities have physical dimensions of length\(^2\)/time\(^3\).

Note that the mean of the discrete time state vector \(\tilde{z}_{k|i} \) is given by
\[
E\{\tilde{z}_{k|i}\} = F_i E\{\tilde{z}_{(k-1)|i}\} + E\{w_{k|i}\}
\] (30)
In addition, the covariance matrix of \(\tilde{z}_{k|i} \) defined as \(P_{k|i} \in \mathbb{R}^{4 \times 4} \) is given by
\[
P_{k|i} = E\{(\tilde{z}_{k|i} - E[\tilde{z}_{k|i}]) (\tilde{z}_{k|i} - E[\tilde{z}_{k|i}])^T\} = F_i P_{(k-1)|i} F_i^T + E\{w_{k|i} w_{k|i}^T\}
\] (31)
Equation 27 provides a state model describing the motion of the target which will be utilized in this paper to track its location.

C. Multi-source Tracking

Consider now that \(M \) sources are transmitting simultaneously. The received signal at the output of the TDLs is now modelled as
\[
\bar{z}[k] = \sum_{i=1}^{M} h_i[k] \odot m_i[k] + n[k]
\] (32)
where
\[
M[k] \triangleq [m_1[k], m_2[k], \ldots, m_M[k]] \in \mathbb{C}^{N \times 1}
\] (34)
with \(m_i[k] \in \mathbb{C}^{N \times 1} \) describing the discretized message signal given by Equation 10 (wideband assumption), and
\[
\mathbb{H}[k] \triangleq [h_1[k], h_2[k], \ldots, h_M[k]] \in \mathbb{C}^{NN_s \times M}
\] (35)
which is time variant and has columns corresponding to the Spherical STAR manifold (see Equation 19) of the \(M \) sources at the \(k^{th} \) time interval.

Equation 33 can be rewritten in a more useful and compact form as follows:
\[
\bar{z}[k] = \sum_{i=1}^{M} h_i[k] m_i[k] + n[k]
\] (38)
\[
\Rightarrow \bar{z}[k] = \mathbb{H}[k] m[k] + n[k]
\] (39)
where \(m[k] = [m_1[k], m_2[k], \ldots, m_M[k]]^T \).

The single target discrete time kinematic model, defined in Equation 27, can be generalised to the "multi-target" case as
\[
\tilde{z}_k = F \tilde{z}_{k-1} + w_k
\] (41)
where
\[
\tilde{z}_k = [\tilde{z}_{k,1}^T, \tilde{z}_{k,2}^T, \ldots, \tilde{z}_{k,M}^T]^T
\] (42)
\[
w_k = [w_{k,1}^T, w_{k,2}^T, \ldots, w_{k,M}^T]^T
\] (43)
\[
F = [I_M \otimes F_i]
\] (44)
Therefore, the covariance matrix of the discrete time state vector \(\tilde{z}_k \) defined as \(P_k \in \mathbb{R}^{4M \times 4M} \) is given by
\[
P_k = FP_{k-1} F^T + Q
\] (45)
where \(Q \in \mathbb{R}^{4M \times 4M} \) is the block diagonal matrix containing all the \(Q_i \) matrices corresponding to all sources as defined in Equation 29.

D. Summary

To simplify the notation let us define the following parameters:
\[
\bar{z}_k \triangleq \bar{z}[k] \in \mathbb{C}^{NN_s \times 1}
\] (46a)
\[
p_k \triangleq n[k] \in \mathbb{C}^{NN_s \times 1}
\] (46b)
\[
\mathbb{H}_k \triangleq \left\{ \begin{array}{l}
I_{NN_s} \otimes \mathbb{H}[k] \in \mathbb{C}^{NN_s \times MN_s} \quad \text{WB-A} \\
\mathbb{H}[k] \in \mathbb{C}^{NN_s \times M} \quad \text{NB-A}
\end{array} \right.
\] (46c)
\[
\mathbb{M}_k \triangleq \left\{ \begin{array}{l}
m[k] = vec \left\{ \left(\mathbb{M}[k] \otimes \mathbb{I}_{N_s} \right)^T \right\} \in \mathbb{C}^{MMN_s \times 1} \quad \text{WB-A} \\
m[k] = [m_1[k], m_2[k], \ldots, m_M[k]]^T \in \mathbb{C}^{M \times 1} \quad \text{NB-A}
\end{array} \right.
\] (46d)

These parameters also help to combine Equations 36 and 39 into the following equation
\[z_k = H_k m_k + n_k \]

(47)

Based on Equations 41 and 47, a state space model describing the dynamics of the motion of multiple sources and the measurement of the signals from the output of TDL at the array elements can be defined as follows:

\[\begin{align*}
\dot{z}_k &= F_k z_{k-1} + w_k \\
\dot{z}_k &= H_k (z_k) m_k + n_k
\end{align*} \quad k > 0 \]

(48)

This is the standard structure of a discrete time state space model which, however, involves the motion parameterization described before and also the Spherical STAR manifold vectors \(h_1 \to h_2 \), \(i = 1, 2, \ldots M \), associated with the \(M \) sources, taking into account both "narrowband" and "wideband" assumptions. With reference to Equation 48, the process noise \(w_k \in R^{4M \times 1} \) associated with the state space model and the measurement noise \(n_k \in C^{NN_s \times 1} \) associated with the wireless channel are assumed to have zero mean and known covariance matrices \(Q \) and \(\sigma^2_{n_k} I_{NN_s} \), respectively. Furthermore, the initial state vector \(z_0 \) has a mean of \(\mathbb{E}\{z_0\} \) and a covariance defined by the matrix \(P_0 \). The first and second order statistics of \(\{z_0, w_k, n_k\} \) can be compactly restated as follows:

\[
\mathcal{E}\left[\begin{bmatrix} w_k \\ n_k \\ z_k \\ z_0 \end{bmatrix} \right] = \begin{bmatrix} W & N_{M \times 1} \\ N_{M \times NN_s} & O_{4M \times NN_s} \\ N_{NN_s \times 4M} & O_{NN_s \times 4M} \\ O_{4M \times 4M} & O_{NN_s \times 4M} \\ O_{4M \times NN_s} & P_0 \\ O_{NN_s \times NN_s} & \mathcal{E}\{z_0\} \end{bmatrix}
\]

where \(O_{p \times q} \in R^{p \times q} \) denotes a matrix of zeros.

III. ARRAYED EXTENDED KALMAN FILTER

In the previous section the multi-target tracking problem is fully described by the discrete time state space model illustrated in Equation 48. In this section, this model will be used to adaptively estimate the state vector \(\hat{z}_k \) based on the knowledge of the system dynamics and the received array signal vector \(\dot{x}_k \) given by Equation 47. In order to accommodate the nonstationary measurement signal and exploit the dynamical model characterizing the target’s motion, a tracking approach based on Kalman filtering is used. Such an approach is convenient for handling multivariate data. In addition, it provides a significant advantage over traditional estimation techniques for the tracking problem under investigation since it is assumed that the state is a random variable to be estimated.

For the tracking problem at hand, the dynamical model characterizing the target’s motion, a tracking algorithm must be developed. This is essentially a Kalman filter in which the nonlinearity is mitigated by linearizing Equation 48 at each time instant so that the traditional linear Kalman filter equations can be applied. It therefore provides a convenient way of recursively updating the target state mean and covariance matrix. Since the EKF approach developed in this section is applied to the problem of tracking targets using arrays, and Equation 48 involves Spherical STAR, it is referred to as the Arrayed Extended Kalman Filter (Arrayed EKF). In order to apply the Arrayed EKF to this tracking problem it is assumed that the number of targets \(M \) is known or has been estimated (e.g., using the MDL or AIC detection algorithms [26][27][28]) and \(NN_s > 4M \). In addition, it is assumed that an approximation of the initial state \(\hat{z}_0 \) is provided either by using a priori guess or via some localization technique (e.g., the large aperture array localization algorithm proposed in [29]).

The Arrayed EKF needs the derivative of the Spherical STAR manifold matrix \(\mathbb{H}_k \) with respect to the state in order to linearize the system of equations. For the \(i \)th source, the gradient of the Spherical STAR manifold vector \(\nabla \mathbb{H}_k \) \(\dot{x}_k \) with respect to a state vector of the \(i \)th target is

\[
\nabla \mathbb{H}_k \dot{x}_{ik} = \mathbb{H}_{ik} \left(\dot{z}_{ik} \odot \mathbb{H}(z_k) \right) \odot (\mathbb{F}_{ik} \mathbb{I}^T) + (\dot{z}_{ik} \odot \mathbb{H}(z_k) \mathbb{I}^T) \odot \nabla \mathbb{H}_k \mathbb{F}_{ik} \]

(50)

For \(M \) sources, using the gradient of \(\mathbb{H}(z_k) \), the following matrix \(D_{k|k-1} \) can be defined as

\[
D_{k|k-1} = \mathbb{H}_k \mathbb{F}_{ik} \]

(51)

Consider that the true state \(\dot{x}_k \) is known and the objective is to estimate the message symbol \(\mathbb{M}_k \) linearly from the following measurement model:

\[
\mathbb{M}_k = \mathbb{W} \mathbb{X}_k
\]

(52)

such that

\[\min_{\mathbb{W}} \mathcal{E}\{(m_k - \mathbb{W} \mathbb{X}_k)^T (m_k - \mathbb{W} \mathbb{X}_k)\} \]

(54)

Using the linear model in Equation 52, the optimal solution for \(\mathbb{W} \) is given by [30]

\[
\mathbb{W} = \mathbb{H}(\dot{x}_k) (\sigma^2_n \mathbb{I}_{NN_s} + \mathbb{H}(\dot{x}_k)\mathbb{H}(\dot{x}_k))^{-1} = \frac{1}{\sigma^2_n} \left(\mathbb{I}_M + \frac{1}{\sigma^2_n} \mathbb{H}(\dot{x}_k)\mathbb{H}(\dot{x}_k) \right)^{-1} \mathbb{H}(\dot{x}_k) \]

(55)

Since the true state is not known, the predicted estimate is used instead. Hence,

\[
\hat{m}_k = \frac{1}{\sigma^2_n} \left(\mathbb{I}_M + \frac{1}{\sigma^2_n} \mathbb{H}(\dot{x}_{k|k-1})\mathbb{H}(\dot{x}_{k|k-1}) \right)^{-1} \mathbb{H}(\dot{x}_{k|k-1}) \mathbb{X}_k
\]

(56)

Based on the above discussion and equations, the Kalman filter equations can be applied directly and the proposed Arrayed EKF algorithm is summarised in Table I. Note that the difficult problem of correctly associating updated parameter estimates

\footnote{Note that here it is assumed in this estimator that the messages of targets are uncorrelated with one another and have unity power.}
Initialize the filter:
\[
\hat{x}_{0|0} = \mathcal{E}\{z_0\}
\]
\[
P_{0|0} = \mathcal{E}\left\{ (z_0 - \hat{x}_{0|0}) (z_0 - \hat{x}_{0|0})^T \right\}
\]
FOR \(k = 1, 2, \ldots \)
\[
\hat{x}_{k|k-1} = \mathbb{F}_{k-1} \hat{x}_{k-1|k-1}
\]
\[
P_{k|k-1} = \mathbb{F}_{k-1} P_{k-1|k-1} \mathbb{F}_{k-1}^T + Q
\]
\[
\hat{z}_k = \frac{1}{\sigma_z^2} \left([\mathbb{I}_M + \frac{1}{\sigma_z^2} H_k^H (\hat{x}_{k|k-1} - \mathbb{H}(\hat{x}_{k|k-1}))]^{-1} \right) \mathbb{H}(\hat{x}_{k|k-1})
\]
\[
\mathbb{W}_{k|k-1} = \nabla_{\hat{z}_k}(\mathbb{H}(\hat{z}_k) \hat{m}_k) |_{\hat{x}_{k|k-1}}
\]
\[
\mathbb{R}_{inv,k} = (\mathbb{W}_{k|k-1} \mathbb{P}_{k|k-1} \mathbb{W}_{k|k-1}^T + \sigma_z^2 \mathbb{I}_{NN})^{-1}
\]
\[
\mathbb{K}_k = \mathbb{P}_{k|k-1} \mathbb{H}_k^T \mathbb{R}_{inv,k}^{-1}
\]
\[
\hat{x}_{k|k} = \hat{x}_{k|k-1} + \mathbb{K}_k (\hat{z}_k - \mathbb{H}(\hat{x}_{k|k-1}) \hat{m}_k)
\]
\[
P_{k|k} = (\mathbb{I}_M - \mathbb{K}_k \mathbb{W}_{k|k-1}) \mathbb{P}_{k|k-1}
\]
END

TABLE I: The proposed Arrayed EKF algorithm

(ranges, directions and radial and tangential velocities) is automatically embedded in the estimation procedure – with each update associated directly with a specific spatiotemporal manifold vector (i.e. with a specific target). The predicted state vector \(\hat{x}_{k|k} \) contains all the unknowns associated with the targets in a pre-specified order determined by the user from the initial locations of the targets and the spatiotemporal matrix \(\mathbb{H} \). It is shown in [31] that the recursive nature of the Kalman filter forces the predicted state vector \(\hat{x}_{k|k} \) to maintain this order and hence this allows the target association problem to be avoided.

Note that if the initial uncertainty is large, the initial covariance \(P_{0|0} \) can be set numerically to \(\eta I_{4M} \) where \(\eta \) is an arbitrary large number. The \(P_{k|k} \) matrix quantifies the uncertainty in the state estimates. If the nonlinearities in the system and measurement are not too severe, then the \(P \) matrix should give us an idea of how accurate the state estimates are. In the Arrayed EKF algorithm, the estimated message symbol can be refined by substituting the updated estimate in Equation 56 at the end of any iteration. This can be used in turn to refine the estimate of the state. Similarly, the linearization error can be reduced by reformulating the Taylor series expansion of \(\mathbb{H}(\hat{z}_k) \) around the new estimate and recalculating the measurement update equations. These two modifications can result in an even better estimate of \(\hat{x}_k \) and the process can be repeated as many times as desired.

IV. THE POSTERIOR CRAMER-RAO BOUND

In this section the Posterior Cramer-Rao Bound (CRB) [24], also known as the Bayesian Cramer-Rao Bound, on the mean square error for the tracking problem illustrated in previous sections is derived. A recursive posterior CRB bound on the state vector \(\hat{x}_k \in \mathbb{R}^{4M \times 1} \) as a function of time is derived based on the discrete time nonlinear filtering bound formulated by Tichavsky et al. [32].

Let, \(X_k \in \mathbb{C}^{KN \times 1} \) and \(Z_k \in \mathbb{R}^{4M(k+1) \times 1} \) denote the observations and target state vector composites respectively which comprise of the sensors measurements and the targets’ motion dynamic parameters up to time \(k \) such that
\[
X_k = [x_k^T, \ldots, x_k^T]^T
\]
\[
Z_k = [z_k^T, z_k^T, \ldots, z_k^T]^T
\]

Also, let \(P_{X_k} Z_k \) denote the joint pdf of the pair \((X_k, Z_k) \), \(\mathbb{E}_{z \in \{ \} } \) the expectation with respect to \(P_{X_k} Z_k \) and the vector \(\hat{z}_k \) an unbiased estimate of the state vector \(Z_k \), which is a function of \(X_k \). The Mean Square Error (MSE) matrix for the state vector composite is defined as:
\[
\text{cov}(Z_k) = \mathbb{E}_{z \in \{ } \{ (\hat{Z}_k - Z_k)(\hat{Z}_k - Z_k)^T \} \]

The posterior CRB is a positive definite \(4M(k+1) \times 4M(k+1) \) matrix formulating a lower bound on the MSE matrix and is given by the inverse of the Bayesian Information Matrix \(\mathbb{J}_{B,k} \) as follows:
\[
\text{cov}(Z_k) \geq \mathbb{J}_{B,k}^{-1}
\]

where \(\mathbb{J}_{B,k} \) is defined as:
\[
\mathbb{J}_{B,k} = \mathbb{E}_{z \in \{ } \{ -\nabla_{\hat{Z}_k} \nabla_{\hat{Z}_k}^T \ln p_{X_k} Z_k \} \]

and can be expressed as a sum of two terms
\[
\mathbb{J}_{B,k} = \mathbb{J}_{P,k} + \mathbb{J}_{D,k}
\]

with \(\mathbb{J}_{P,k} \) denoting the a priori information matrix defined by
\[
\mathbb{J}_{P,k} = \mathbb{E}_{z \in \{ } \{ -\nabla_{\hat{Z}_k} \nabla_{\hat{Z}_k}^T \ln p_{Z_k} \} \]

In the above equation \(\mathbb{E}_{z \in \{ \} } \) denotes the expectation with respect to \(p_{Z_k} \) and \(\mathbb{J}_{D,k} \) is the contribution of the data to the information matrix, which is given by the following equation:
\[
\mathbb{J}_{D,k} = \mathbb{E}_{z \in \{ } \{ -\nabla_{\hat{Z}_k} \nabla_{\hat{Z}_k}^T \ln p_{X_k} | Z_k \} \}
\]

where \(\mathbb{E}_{z \in \{ \} } \) denotes the expectation with respect to the conditional \(p_{X_k} | Z_k \). Note that \(\mathbb{J}_{D,k} \) is the expected value of the standard Fisher Information Matrix (FIM) \(\mathbb{J}_k \) over the a priori distribution \(p_{Z_k} \). That is,
\[
\mathbb{J}_{D,k} = \mathbb{E}_{z \in \{ } \{ \mathbb{J}_k \} \]

Note also that \(\text{cov}(Z_k) \) and \(\mathbb{J}_{B,k} \) are all \(4M(k+1) \times 4M(k+1) \) matrices where \(M \) is the number of targets.

Let us define the lower right \(4M \times 4M \) block of \(\mathbb{J}_{B,k}^{-1} \) with \(C_k \). This is the Posterior CRB for estimating \(\hat{z}_k \) (the dynamic parameters of the target at time \(k \)) and is the inverse of the Bayesian Information Matrix \(\mathbb{J}_{B,k} \). The calculation of this matrix is generally notoriously difficult. However, assuming that the joint distribution \(p_{X_k} Z_k \) satisfies the CRB regularity conditions [24], Tichavsky et al. [32] provide an elegant method for calculating the information matrices \(\mathbb{J}_{B,k} \) recursively as follows:
\[
\mathbb{J}_{B,k} = J_{22} - J_{12}^T (J_{B,k-1} + \mathbb{J}_{11})^{-1} J_{12} + \mathbb{J}_{D,k}
\]

where
\[
\mathbb{J}_{P,k-1} = \begin{bmatrix} J_{11} & J_{12} \\ J_{12}^T & J_{22} \end{bmatrix}
\]
with
\[J_{11} = \mathcal{E}_z \{ -\nabla_z \ln p_{z|z_{k-1}} \} \]
(68)
\[J_{12} = \mathcal{E}_z \{ -\nabla_z \ln p_{z|z_{k-1}} \} \]
(69)
\[J_{22} = \mathcal{E}_z \{ -\nabla_z \ln p_{z|z_{k-1}} \} \]
(70)
Also
\[J_{D,k-1} = \mathcal{E}_z \{ -\nabla_z \ln p_{z|z_{k-1}} \} \]
(71)

The recursion is initialised using
\[J_{B,0} = \mathcal{E}_z \{ -\nabla_z \ln p_{z_0} \} \]
(72)

Note that the matrix \(J_k \) in Equation 71 is the standard FIM for estimating the state vector \(\bar{z}_k \) based on the observation \(x_k \). The recursion involves computations with matrices of dimension \(4M \times 4M \).

Following the previous discussion, the state space model described in Equations 48 and 49 has a linear additive white Gaussian noise process model and a nonlinear measurement model. The Bayesian Information Matrix can be computed recursively by evaluating the matrices defined in Equations 68 to 71. A common term in the definition of each of the matrices \(J_{22}, J_{11}, J_{12} \) is \(-\ln p_{z|z_{k-1}}\), which can be simplified using the Gaussian structure of the process state model in the tracking problem in hand as follows:
\[-\ln p_{z_k|z_{k-1}} = \frac{1}{2} \left(\mathbb{E}_z - \mathbb{E}_{z_{k-1}} \right)^T \mathbb{Q}^{-1} \left(\mathbb{E}_z - \mathbb{E}_{z_{k-1}} \right) + c_0 \]
(73)
where \(c_0 \) denotes a constant independent of \(\mathbb{E}_z, \mathbb{E}_{z_{k-1}} \). As a result, the recursion of the Bayesian Information matrix (see Equation 66) has the form
\[J_{k} = \mathbb{P}^{-1} + \mathbb{F}^{-1} \mathbb{Q}^{-1} \mathbb{F}^{-1} \]
(74)
By applying the familiar matrix inversion lemma (refer to [33]), the matrix \(J_{P,k-1} \) can be written in a more compact way as
\[J_{P,k-1} = \left(\mathbb{Q} + \mathbb{F}^{-1} \mathbb{Q}^{-1} \mathbb{F} \right)^{-1} \]
(75)

In order to evaluate the contribution of the data to the information matrix represented by the matrix \(J_{D,k} \), a careful analysis of the observation model is needed. From Equation 71, the matrix \(J_{D,k} \) is obtained from the expected value of the standard Fisher Information matrix \(\mathbb{J}_k \) of the array observation data model. The array output is a temporally white random vector with zero mean and covariance matrix:
\[\mathbb{R}_{x_k} = \mathbb{H}_k^H \mathbb{R}_{m_k m_k} \mathbb{H}_k + \sigma_n^2 \mathbb{I}_{NN} \]
(76)
where \(\mathbb{R}_{m_k m_k} \in \mathbb{C}^{M \times M} \) denotes the signal covariance matrix.

The standard FIM for estimating the composite state vector \(\bar{z}_k \) for all targets can be seen as a direct extension to the work in [34] and has the following form:
\[J_k = \frac{2}{\sigma_n^2} \text{Re} \left(\mathbb{H}_k^H \mathbb{D}_k \mathbb{D}_k^H \mathbb{H}_k \right) \]
(77)
where the \(\mathbb{D}_k \) is given by
\[\mathbb{D}_k = \nabla \mathbb{E}_z (\mathbb{H}_k) \]
(78)
and the matrix \(\mathbb{F}^\perp_{\mathbb{H}_k} \) denotes the projection operator on the complement subspace spanned by the columns of \(\mathbb{H}_k \) and defined as \(\mathbb{F}^\perp_{\mathbb{H}_k} = \mathbb{I}_{NN} - \mathbb{H}_k (\mathbb{H}_k^H \mathbb{H}_k)^{-1} \mathbb{H}_k^H \). For simplicity, signals from different targets are assumed to be unrelated and, therefore, the signal covariance matrix \(\mathbb{R}_{m_k m_k} \) is reduced to the unity matrix \(\mathbb{I}_M \). Consequently, Equation 77 becomes as follows:
\[J_k = \frac{2}{\sigma_n^2} \text{Re} \left(\mathbb{D}_k^H \mathbb{F}^\perp_{\mathbb{H}_k} \mathbb{D}_k \right) \]
(79)
As a result, the total Bayesian Information Matrix recursion can be given by:
\[J_{B,k} = \left(\mathbb{Q} + \mathbb{F}^{-1} \mathbb{Q}^{-1} \mathbb{F} \right)^{-1} + \mathcal{E}_z \left(\frac{2}{\sigma_n^2} \mathbb{F}^\perp_{\mathbb{H}_k} \mathbb{D}_k \right) \left(\mathbb{Q} + \mathbb{F}^{-1} \mathbb{Q}^{-1} \mathbb{F} \right)^{-1} \]
(80)

The expectation in the above equation is generally evaluated using Monte Carlo techniques.

For a single target \(M = 1 \), the total Bayesian Information Matrix recursion is greatly reduced to:
\[J_{B,k} = \left(\mathbb{Q} + \mathbb{F}^{-1} \mathbb{Q}^{-1} \mathbb{F} \right)^{-1} + \mathcal{E}_z \left(\frac{2}{\sigma_n^2} \mathbb{F}^\perp_{\mathbb{H}_k} \mathbb{D}_k \right) \]
(81)
where the term \(c_k \) is given by
\[c_k = N_\alpha \mathbb{1}_N^T \left(\mathbb{R}_s^2 \mathbb{1}_N \otimes \mathbb{D}_k^2 \right) \]
(82)
Note that according to the above equation, \(c_k \) is a positive number greater than 1 and it monotonically increases with the length of the TDL \((N_s) \) and the number of array elements \((N) \). Note also that \(c_k \) in Equation 81 ranges between 0 and 1 and \(c_k \rightarrow 1 \) when \(N_s \rightarrow \infty \) or \(\sigma_n^2 \rightarrow 0 \).

Now, some useful properties of the Bayesian Information Matrix are established. Specifically, the effect of increasing the number of sensor nodes \((N) \) and the length of the TDL \((N_s) \) on the Bayesian Information Matrix recursion is investigated. In order to do that, some auxiliary results are firstly established.

Lemma 1: Consider the matrices \(\mathbb{Q}, \mathbb{F} \) defined in Section II-B and the a priori information matrix \(J_{P,k-1} \) given by Equation 75. Let \(J_{B,k}(\mathbb{N}) \) be the Bayesian Information matrix...
using N sensors at time k. If
\[J_{B,k-1}(N + 1) \geq J_{B,k-1}(N) \]
then the a priori information recursion at any time $k - 1$ increases monotonically with increasing N. That is the matrix $J_{P,k-1}$ satisfies the following order:
\[J_{P,k-1}(N + 1) \geq J_{P,k-1}(N) \quad (83) \]
Similarly, let $J_{B,k}(N_s)$ be the Bayesian Information Matrix using a TDL of length N_s. If
\[J_{B,k-1}(N_s + 1) \geq J_{B,k-1}(N_s) \]
then
\[J_{P,k-1}(N_s + 1) \geq J_{P,k-1}(N_s) \]

Proof: The proof of this lemma uses some of the matrix properties included in [33]. Since $J_{B,k-1}(N + 1)$ and $J_{B,k-1}(N)$ are Hermitian positive definite matrices for all time k and if $J_{B,k-1}(N + 1) \geq J_{B,k-1}(N)$, then:
\[J_{B,k-1}^{-1}(N + 1) \leq J_{B,k-1}^{-1}(N) \]
The previous inequality is preserved by pre and post multiply by F and F^T,
\[FJ_{B,k-1}^{-1}(N + 1)F^T \leq FJ_{B,k-1}^{-1}(N)F^T \]
Therefore, since the matrix Q is positive definite, the following order is satisfied:
\[FJ_{B,k-1}^{-1}(N + 1)F^T + Q \leq FJ_{B,k-1}^{-1}(N)F^T + Q \]
By inverting both sides of the inequality, the following result is obtained:
\[\left(FJ_{B,k-1}^{-1}(N + 1)F^T + Q \right)^{-1} \geq \left(FJ_{B,k-1}^{-1}(N)F^T + Q \right)^{-1} \]
\[J_{P,k-1}(N + 1) \geq J_{P,k-1}(N) \]
This concludes the proof of the first part. The second part can be proved in a similar way.

Lemma 2: Consider the matrix $J_{D,k}$ defined in Equation 80. $J_{D,k}$ at any time k increases monotonically with increasing the number of sensors (N) or increasing the TDL length (N_s). That is the matrix $J_{D,k}$ satisfies the following order:
\[J_{D,k}(N + 1) \geq J_{D,k}(N) \]
\[J_{D,k}(N_s + 1) \geq J_{D,k}(N_s) \quad (84) \]
for each time instant k where $J_{D,k}(N)$ denotes the $J_{D,k}$ matrix using N sensors and $J_{D,k}(N_s)$ is the $J_{D,k}$ matrix using a TDL of length N_s.

Theorem 3: The Bayesian Information Matrix recursion at any time k increases monotonically with increasing the number of array sensors (N) or the TDL length (N_s). That is the matrix $J_{B,k}$ satisfies the following order relations:
\[J_{B,k}(N + 1) \geq J_{B,k}(N) \quad (85) \]
\[J_{B,k}(N_s + 1) \geq J_{B,k}(N_s) \quad (86) \]

Proof: From Equation 80, in order to prove this theorem, it is sufficient to prove that the following two relations hold:
1. $J_{D,k}(N_d + 1) \geq J_{D,k}(N_d)$
2. $J_{P,k-1}(N_d + 1) \geq J_{P,k-1}(N_d)$
where N_d denotes the number of sensors or the length of the TDL line, i.e., $N_d = N$ or $N_d = N_s$.

The first inequality directly follows from Lemma 2. To prove the second inequality, Lemma 1 is used such that the problem is reduced to proving the following inequality:
\[J_{B,k-1}(N_d + 1) \geq J_{B,k-1}(N_d) \]
However, the Bayesian Information Matrix recursion is initialised using
\[J_{B,0} = \mathcal{E}_{\mathbb{Z}} \left\{ -\nabla z_0 \nabla^T z_0 \ln p(z_0) \right\} \]
which is independent of N_d. Therefore, since,
\[J_{D,1}(N_d + 1) \geq J_{D,1}(N_d) \]
the Bayesian Information Matrix recursion $J_{B,1}$ satisfies the following order:
\[J_{B,1}(N_d + 1) \geq J_{B,1}(N_d) \]
Given $J_{B,1}$, from the second condition, it can be easily deduced that:
\[J_{B,k-1}(N_d + 1) \geq J_{B,k-1}(N_d) \]
which in turn guarantees the second relation and completes the proof.

The above theorem (Theorem 3) highlights the positive effect of increasing the number of array sensors and the TDL length on the performance of the tracking algorithm. Thus by utilizing more array elements and/or a longer TDL length for the “difficult” paths/intervals of the tracking process, the estimation can be improved even further. This is of particular importance in sensor networks where the availability of redundant nodes can be utilized to increase the number of nodes forming an array system in difficult tracking situations, e.g., crossing situations.

V. PERFORMANCE EVALUATION

The simulation environment is described as follows. The array used for tracking is defined as
\[
\mathbf{r} = \begin{bmatrix} 0 & 50 & 30 & -30 & 30 & 10 & -50 \\ 0 & 0 & 45 & -50 & -62 & 75 & 29 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\quad (87)
\]
measured in meters. As can be seen, the array does not possess any special geometrical structure. Two narrowband sources of equal power are tracked using the array. The signals of the sources are simulated as independent identically distributed Gaussian processes with a unity variance and the carrier frequency f_c is assumed to be 2.4 GHz. The targets are moving in the same plane as the sensor array. The array elements and the trajectories of the sources in the x-y plane are shown (blue dotted lines) in Figure 5. It is important to note that Figure 5 shows targets crossing in space. However, by studying the trajectories of these targets as a function of range and direction over time, as shown in Figures 7 and 8, it can be seen that that this crossing doesn’t occur at the same time. In particular, in Figure 7 it is shown that the targets have
Fig. 5: Position Tracking: True trajectories of two sources to be tracked using the $N = 7$ element array in Equation 87.

Fig. 6: Position Tracking: True trajectories and tracked positions using the proposed algorithm for two sources at SNR in $= 0$ dB for the environment of Figure 5 with $N_s = 10$.

Fig. 7: Range Tracking: True and tracked ranges using the proposed algorithm for two sources at SNR$_{in} = 0$ dB for the environment of Figure 5 with $N_s = 10$.

Fig. 8: Azimuth Tracking: True and tracked azimuth angles using the proposed algorithm for two sources at SNR$_{in} = 0$ dB for the environment of Figure 5 with $N_s = 10$.

the same range at times 0.9s and 4.5s but don’t have the same direction at these times relative to the array reference point. Furthermore, in Figure 8 it is shown that they have the same direction at time 1.5s but not the same range. In this paper, we also consider the crossing situation where targets cross in space at the same time.

Tracking is assumed to be performed over an interval of 5s with $T = 1$ms. Hence, there are a total of 5000 snapshots of data are available at the end of the tracking interval. When applying the tracking algorithm, the initial locations of the targets are assumed to be known to within 1 meter (e.g. estimated using any high resolution localization approach as in [29]) with initial covariance matrix $P_{00} = I$. Note that it is impractical to assume full knowledge of the true process noise statistics. Therefore, the selected process noise parameters are not related to the simulated ones. That is, the selected level of the range process noise is $q_{r_i}^2 = 30$ m2/sec3 and the direction (angle) process noise is $q_{\theta_i}^2 = 0.035$ rad2/sec3 where $i = 1, 2$.

A. The effect of SNR$_{in}$

For the purposes of simulation, the length of TDL for each element is assumed to be 10 ($N_s = 10$). The array data is simulated for 0 dB SNR$_{in}$.

Figure 5 provides a plot of the two target trajectories. Figures 6 to 10 provide a plot of the true target motion parameters in dotted blue lines superimposed by red solid lines representing the corresponding estimated parameters in a typical sample run.

From Figures 6, 7 and 8, it is clear that the proposed tracking algorithm accurately estimates the location parameters of the 2 targets for SNR$_{in} = 0$ dB. In addition, the radial and orthoradial velocity for targets are estimated with a relatively
Fig. 9: Radial Velocity Tracking: True and tracked radial velocity using the proposed algorithm for two sources at SNR_{in} = 0 dB for the environment of Figure 5 with N_s = 10.

Fig. 10: Tangential Velocity Tracking: True and tracked tangential velocity using the proposed algorithm for two sources at SNR_{in} = 0 dB for the environment of Figure 5 with N_s = 10.

Fig. 11: Range PCRB and MSE: Comparison between the Posterior CRB and the MSE of the estimated range of the 1st moving source associated with Figure 8.

Fig. 12: Azimuth PCRB and MSE: Comparison between the Posterior CRB and the MSE of the estimated direction of the 1st moving source associated with Figure 8.

For comparison, Figures 11 and 12 also show the mean square error (MSE) of the Arrayed EKF tracking algorithm estimates, for SNR_{in} = 0 dB (blue dotted-line) and SNR_{in} = 10 dB (black dotted-line). In particular, the tracking algorithm estimates are utilized for the numerical computation of the mean-square error matrix given by:

\[\hat{P}_{k|k} = \frac{1}{L} \sum_{l=1}^{L} \left(\hat{z}_{k|k}(l) - \hat{z}_{k} \right) \left(\hat{z}_{k|k}(l) - \hat{z}_{k} \right)^T \]

where the estimates were averaged over L = 50000 Monte Carlo trials. It is interesting to note that the MSE of the proposed Arrayed EKF tracking algorithm is very low and come very close to achieving the bound at some time instants.

5Results with 50 and 1000 Monte-Carlo trials have shown that the MSE occasionally falls below the PCRB. However, using a large number of trials, the MSE curves remains above the PCRB - as theoretically expected.
Fig. 13: Position Tracking with Variable TDL Length: True trajectories and tracked positions using the proposed algorithm for two sources at $\text{SNR}_{in} = -10$ dB for the environment of Figure 5 with: (a) $N_s = 10$ (b) $N_s = 20$.

B. The Effect of Increasing the TDL Length

In this section the effect of increasing the dimensionality of the spatiotemporal manifold vector is examined. The dimension of this manifold vector can be increased by increasing either the length of the TDL (N_s) in each array element or the number of array elements (N). In this section, the effect of increasing N_s on the tracking performance is chosen for investigation. Note that increasing the array size (N) at fixed SNR will have the same effect.

Two different sets of array data are simulated at SNR_{in} equal to -10 dB for two TDL lengths: $N_s = 10$ and $N_s = 20$. The aim is to track the trajectories of two targets shown in Figure 5 using same array defined in Equation 87. Figure 13 provides a sample run estimate of the target position and the corresponding real position for each of the two TDL lengths. From Figure 13(a) it is clear that the tracking algorithm exhibits poor performance in tracking the motion parameters of the targets’ trajectories when $N_s = 10$. On the other hand, the estimation accuracy is significantly improved by increasing N_s to 20 as observed in Figure 13(b). These results indicate that the tracking algorithm improves significantly as the length of the TDL increases.

C. Crossing Situations

All the trajectories of the targets displayed in the previous figures represent situations where targets may have the same range or direction at any instant of time but not both. In other words, the targets do not cross in space at the same time instant. In this section crossing situations are considered where targets cross in space at the same time. In the scenario under investigation, two targets cross in space at 2.5s at different velocities. The following table shows the main parameters of this scenario.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR_{in} (dB)</td>
<td>10</td>
</tr>
<tr>
<td>Number of Sensors (N)</td>
<td>7</td>
</tr>
<tr>
<td>TDL length (N_s)</td>
<td>10</td>
</tr>
<tr>
<td>Number of Targets</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 14, 15 and 16 illustrate one of the distinguishing features of the proposed Arrayed EKF model; since velocities (radial and tangential) are incorporated in the observation model, targets crossing can be easily resolved if velocities are sufficiently different.

In this case, as targets get closer to each other, i.e. when a crossing situation is predicted, the number of array elements is increased to alleviate any degradation in the tracking performance. In practice, the controller of an array can wake up nodes in its communication range when detecting a possible crossing situation. Figure 14 shows the scenario under investigation where only the first 5 elements of the array defined in Equation 87 are initially used to track the two targets (region A in Figure 14). This is increased to using all 7 elements after 2 seconds as targets begin to become closer to each other (region B). After 3 seconds, targets are sufficiently far from each other and the algorithm reverts back to using the initial 5 element array (region C). Note that in each region, all parameters apart from the number of array sensors remains fixed. Figures 15 and 16 show the tracking of range and direction, respectively of the proposed approach. Furthermore, Figure 17 shows the computational complexity of the proposed algorithm with N changing from 5 to 7 to 5 array elements. For comparison, the same figure also shows the computational complexity of the proposed algorithm when N is fixed at 7. The total computational saving over the entire tracking interval in this scenario is over 20%. Figure 18 shows the RMSE for tracking the same trajectory using $N = 5$, $N = 7$ and also $N = 5$ to 7 to 5. The total mean square error increased from
Fig. 14: Position Tracking for the Crossing Situation: True trajectories and tracked positions using the proposed algorithm for two crossing sources at SNR$_{in}$ = 10 dB with $N_s = 10$. An array of 5 sensors is used in interval A, increasing to 7 in interval B and reducing again to 5 in interval C. The red squares represent the initial 5 sensor array. The blue squares represent the two additional sensors used to form the 7 sensor array in the interval B.

Fig. 15: Range Tracking for the Crossing Situation: True and tracked ranges using the proposed algorithm for two crossing sources for the environment of Figure 14. 0.0012 m using 7 sensors to 0.0014 m using the "adaptive" N_s sensors.

Fig. 16: Azimuth Tracking for the Crossing Situation: True and tracked azimuth angles using the proposed algorithm for two crossing sources for the environment of Figure 14.

Fig. 17: Computational Complexity for the Crossing Situation: Computational complexity of the proposed algorithm for two crossing sources for the environment of Figure 14. The number of array elements changes at time 2s from $N = 5$ to $N = 7$ and then at time 3s back to $N = 5$ again. Also shown is the complexity when N is fixed at 7.

VI. CONCLUSIONS

In this paper the problem of tracking multiple moving targets was tackled using large aperture arrays. Firstly, the novel spherical spatiotemporal state space model was presented incorporating the ranges, directions and Doppler effects of the targets and the array geometry. Then, based on the concept of the Extended Kalman Filter (EKF), a novel space-time self-adaptive approach to track multiple moving targets was proposed. In addition, based on the Posterior Cramer-Rao Bound (Posterior CRB), a recursive lower bound on the error covariance matrix of the tracking problem was calculated. A theorem that explains the effects of various parameters on the Posterior CRB was developed. In particular, the impact of increasing the number of sensors and the length of the tapped delay line (TDL) on the Posterior CRB was investigated. It was also proved that the proposed tracking algorithm can track the locations of the targets with high accuracy and exhibit good performance even in simultaneous crossing situations. Simulation results were presented to demonstrate the ability...
of the proposed algorithm to track the locations and velocities of the targets with high accuracy in various scenarios. The validity of the derived Posterior CRB was also demonstrated using computer simulations.

REFERENCES

