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1. INTRODUCTION

Diversity may be defined 25 2 genesal techaigue tha: utilizes o or meora

copies of a signal with varying Cegrees of noise effects to achieve, by a sel=ciisz or 2

"y

combination scheme, higher cegree of message-recovery performance that s

—

achievable from any ore of the individual copies sepasately.

2. CLASSIFICATION OF DIVERSITY TECHNIQUES

DIVERSITY
FREQUENCY | TIME SPACE POLARIZATION ;
DIVERSITY DIVERSITY DIVERSITY DIVERSITY ,

e.g. Frequ. Diver.: parallel chaanels may be used to traasmit the same information
simultaneously transmitted on 4, say, different carrie: frequencies; thea ab the recsivers the 4

sigaals are combined before a decision is made).

3. SPACE DIVERSITY: ARRAYS

By distributing a number of sensors (transducing elements, receivers, etc) in a
3-dimensional cartesian space, aa array is formed; the region over which the
seasors are distributed is called the aperture of the array. The general acray
processing problem is the obtaining of information about 2 signal environment from
the waveforms received at the array elements (Figure I), where the signal
environment consists of a number of emitting sources plus noise. These emitting
sources, in the case of radar-based systems, are often targets which either reflect
transmitted signals (as in active radars) or emit their own signals, (as in passive
radar). In situations involving the use of sonar and seismic signals the problems are

- essentially the same as those encountered in the case of radar.
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FIGURE- 1

ARRAY PROCESSING PROZLEM

/

: denotes an array elsment
: denotes an emitting source

S
oz
. : denotes a reflacting surface

PROBLEM: USING A NUMBER OF SENSORS ESTIMATE SIGNAL ENVIRONMENT
IN THE PRESENCE OF NOISE ' )
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A2 important topic ia- the airey processing prodiem is concerned with
interietence rejection. Since the emitiing sources are disicibuted in space the array
ca2 perform both spatial aad temzoral filtering in oxde: to optimize the raception

cf 2 sigaal from a desized sou-ce (desired sizael). This can be achieved b using aa

0q

a:ray-pattern-forming-network (Figure 2c) so as to place relatively high gaiz in
those directions and frequeacies which cortain the desired signal! aad 2% the same
time place nulls in the directions and frequencies of tre remainiag uawanated
(iaterfesing) sources.

If the signal envirorment is known then the paltera-forming network caa be
fixed and the asray response prs-determined. However, in praciice the signal
exvironment is often unknown aand may vary with time or change its struciure (i.e.
te turning on and off of certain souzces) axd thus a very versatile scheme must be
used which leads to the oacept of adaptive arrays. Ia adaptive arrays there is an
adaptive processor which contzols the patiera-forming nevwork according to some
periormance criterion (Figure 2b).

Azother eacray processing problem is corcermed with spaiial specirum
esiimaiion and identification. Witha problems of this type, the array ceiects the
number of directional sigaals preseat in the array eavironment and estimates thei-
pasameters; such as location, power, cross correlation etc. Classical spatial spectral
estimation techniques are based on the Fourier trazsform (Conventiona! Beamfo-
rme). The main drawback of the Fourier methods is that thev offer limited
resolving capabilities. Thus, in the last decade the so called High Resolution
Meihods bave been introduced, their main object being to improve the resolving
capabilities by using a model for the sigaals better thaa that used by Fourier
methods. These methods have given fresh impetus to the array processing problem
by dealing with the question of the resolution of the arrays in such a way that there
is elimination of the effecis of Signal-to-Noise-plus-Interference Retio (SNIR) on
resolution, in contrast to the conventional methods where tke resolution is limited
by noise.

Recently, the new class of processing techniques called High Rzsolution
Adcptive Array Processing has been created by merging the objectives of both the
above mentioned classes. The new class relies heavily on Adaptive Array
Techniques, Modern Estimation Theory and Parallel Computer Processing. In
general, the aim of High Resolution Aduptive Array Processing is to isolate one
source and, in addition, to provide estimates of certain other parameters such as

the number of interferences present and their directions etc. thus giving solutions
to many physical problems arising in communications, radar, sonar, geophysics etc. '
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FIGURE- 2
PATTERN FORMING
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4. HISTORICAL PERSPECTIVES

Eazly work in array processing for intesferenca sippression weas carred gui a-
tze MIT Lincola Laboratery in 1963. This work was conceraed wiih 2 noa-adaptive
interference canceller which could handle oze source a: a time. The basic idea was
to use a main aatenna to leok at the desired signal 2=d a second aateana to leok at
tae interference and then to subtract the output of the second antenna from he
main anteana, with a proper phasing being employed.

Altbough the term “edaptive arrays” was fi-s: introduced by Vaa Atz in 1639, the
fizst papers on adaptive arrays were probably those publisted in 1964 in a special
IZEE issue on Antenna end Progagation 1964, In 1485 the foundations of array
Drocessing and particula:ly adaptivg arsay processing were established in two
papers: by Widrow [WIN-66] and Applebaum [AP?-36]. The baper by Widrow

iz:roduced 2 paw approacx for cozirolling tas weighis of an adapiive filter and th

-t

373

paper by Applebaum presexted 2 sidelobe cancelle- capable of hazdling muliiple
jamming sources by using the cozcept of a correlgtion feedoack loop (knowa today
es Applebcum’s loop), for maximiziag the signal-to-noise razio (SNR). Applebaum’s
sicelobe canceller does, however, need prior knowledgs of the signal directions aad
tses 2 high gain antenna as the maia changnel. In geaerel, in adaptive arzavs, there
is however no need for prior knowledge of the directions of the sources, nor is there
2 need for use of a high gain antenna. The sidelobe cazcelles approach is thus not
very general. ,

The first paper on General Adaptive Arrays was published the following year
(1967) by Widrow et al who applied the ideas contained in his previous paper
[WID-66] to develop an adaptive array system. Widrow’s work was epoch making
aad it was based on the minimization of the mean square error between the desired
sigaal and the array outpui. This approach has come to be known as the Least
Mean Square (LMS) algorithm. Applebaum’s loop aad LMS algorithm have two
common points: both use the array covariance meatrix in order to desive their
adaptive weights and both converge towards the same steady state weight vector
which is the WIENER-HOPF solution. . ’ -

An attractive alternative to the LMS algorithm was introduced in 1974 by
Reed, Mallet and Brennan which overcomes the seasitivity of the LMS-type
algorithm to eigenvalue spread. The Reed-Mallet-Bregnan approach has come to be
known as the Sample Matrix Inversion (SMI) algorithm. In the SMI algorithm the
optimum weights are found by estimating the covariance matrix and then solving 2
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linear system of equatiops.

One of the main problems wizs conveziinonal adzszive arravs is relazed to thei;

inebility to resolve two sources which a-e Posiziczad ¢losa togeizar. This s
tiusirated in F gure J2, which shows simulaticn resuies cdiaized with a linea- array
of 5 isotropic uniformly distribyted elemears. This =, ility is imposed by the fac:
that the resolution of adaptive a:tays is limised by txe SNR. This is demonstirated
o Figure 3b in conjunction with Figure 3a., which s2ows that if SNR is 10¢B tken
the array is unable to resolve tre two sigaals incidezt from dizections 30° and 33

1
Te

corzespondingly (Figure 3z2); with 2 SNR of approximeiely 30dB (Figurs 33) tre
two scurces of Figure 3¢ can be resolved. The i:aBiIit}' of 22 array o resolve
sources that are close together when poise is Presext gave rise to 2 new class of
techniques that have besn wused for the location of emitiing sources: These
techniques are called High Resoluiion (or Szpcrreso.’ut:’on) techniques. Two popular
methods beloaging to this pew class aze the 5o calied Maximum Likelihced Method
(MLM) which is based on the work of Cazez 0 fr2quency-waveaumbe- analvsis,
a2d tae Madimum Entropy Method (MEM of Burg. Capoz’s method is based on
the minimization of the output power subject to the consiraint that the izaer pro-
duct of the weight-vector and Source Position Vecter is equal to 1. Oz tke other
baad, Burg’s method is besed on 21 itera:ive search tecknique which maximizes
the eatropy subject to a number of constraiazs.

Pethaps the most important High Resolution Techaiques curreztly being
examined are the so called Signg! Subspace teckaiques. Aspects relaiing to
techniques of this kind g0 back to 1795 whea Baron de Prony published his work
on the fitting of superimposed exporentials to data. The Signal Subspace 2pproach
was first introduced formally by Schmidt in narrow-band array processing problems
and rediscovered independently by Bienvenu and Kopp.

The Signal Subspace approach to high resolution involves two main stages of
Processing. In the first stage a covariance matrix of the data at the sensors of the
array is formed and in the second stage an eigenvector decomposition is performed
(see for example MUSIC algorithm). By the eigenvector decomposition, the

observation space is partitioned into two disjoint subspaces:

e the Signal Subspace (SS), with dimension equal to the number
of sources, spanned by the Source Position Veczors (SPV);
® the Noise Subspace (NS), with dimension equal to the number

of sensors, minus the number of sources.
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FIGURE- 3
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Thus, every vecior belonging to the NS is 6rthogonal to each SPV. The signal
subspace approach offers hizgher resolving power and less ambiguity thag otker high
resolution methods including the MLM technique ¢f Capoz aad the MEM methed
of Burg. This can be seea, for example, in the Comparative compute- simulation

siudies carried oyt by Johnson and Miner where:

(1) the MLM Wwas capable of resolving two sources with 10°
separation, provided the SNR was suflicient]y high, but it was
unable tb do so for sourcss with 3° separation;

(i7) the MEM Produced no usable results and .

(iii)the MUSIC algorithm (a signa! subspace technigue) produced

results in every considered situation.

Thus, signal subspace techziques, which kave been used mainly in esiimating the
: : Tpe? : 2.l is aee PPN I 0
directions of emitiing sources by employing a spatial rrar, offer asympiotically

‘I2flnite” resolving power capabilities, with imitations Imposed only by the limited

observation time and the inaccurate modelling of the medium.

5. AN IMPORTANT PROBLEM

Propagation is present. The nature of the failure of existing techniques is illustrateqd
in Figure ¢ where a linear array of § isotropic elements is considered and three
sigaals, two of which are assumed corzelated, aze preseat. Figure 4, shows that
although the Signal Subspace algorithm (MuSIC) correctly indicates the lIocation
(direction) of the uncorrelated source, it fails completely to indicatea even the
existence of the two correlatedAsou__rcs. . L

~
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FIGURE- &
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In additiog to their inability to operate with correlated signals, sigaal subspace
alzorithms also require prior kaowledge of the Rumber of sigaals preseat jn order to
be 2ble to function correctly, .

Thus, at this time much effors is being devoted to the question of baadling
correlated (multipath) Sources. In order to rectify this ‘breakdown’ of kigh
resolution and Particulacly signa] subspace techniques when signal correlation (or
Coherence) is involved, a number of pew techniques have beea developed. The most
sizaificant of those pew techniques are based on the idez of subaperture sémp.’z’ng or
- §pciéia! $moothing discovered originally by Evaas, Joknson a2d Sez and

i:c'ependently rediscovered and improved by Shan, Wax azd Kailath. Tha Spetial
Smoothing( technique is baseq on deﬁ:ﬁng 2 number of sibarrays aad for each
subasray the Covariance mat-ix R; is formed. Then the avesage covariaace matrix R
s estimated ag follows:

~
Rzz\":. of :E.'Sf;rr:ys'z R‘ (l)
i

Alzer this, the pexe S-2g2 ir the process s to use the Previously developed MuSIC
algorithm to provide the location of the souzces.

Eowever, this method can only be applied to lineas arrays with uniformly spaced
ideatical sensors. In addition, it Provides 2 reduyciion of array aperiure which
implies a reduction in resolving power. Thus the Shaa, Wax and Kailath technique

Is not very satisfactory.



Go ARRAY AMBIGUITIES

Source location ambiguity mar arise wheneve- 1) the array maaifold repeats
izself or ii) a point on the a:ray meaaifold caa be writcea as a lipeas combization of
scme other points. A simple example as 2 kelp in visualiziag case (ii) is whea a ray
from the origin intersects the mazifold at more than one point. A useful way of
measuring the degree of ambiguity is by means of manifold dimensionalizy. Thus,
consider that aris the largest number, such that for every combination of ar distinct
directions their corresponding Source Positica Vector (5PV) can be a base of an ur
dimensional subspace. Thea ar is defined as tke dimensionality of the array
maaifold. Once the array manifold, for a particular visible ares, has beea calculated
a2d stored the array menifold dimensionality can be estimated and therefore
( becomes kaown for that particular array design. The dimensionality reflects the
meximum number of signals which can be uaiquely resolved by the array without

22y ambiguity arising.
It is impariant to point out that the array does rot preseat the same resoluion

characteristics in the whole domain of directions.

“¥ SIGNAL SUBSPAGE APPROACH

High-Resolution in array processing is taken to be the ability to distinguish the
( effects of two equal power sources located close together. Although the resolving
power of an array can usually be improved by increasing the aperture of the array,
this is not, in general, acceptable and an alternative for a given array aperture is to
use High-Resolution or Superresolution Techniques.

Signal Subspace approach to high resolution involves two main stages of
processing. In the first stage a covariance matrix of the data at the sensors of the
array is formed and in the second stage an eigenvector decomposition is performed.

When the number of emitters is smaller than the number of sensors,.the

+  determinant of the covariance matrix js equal to zero in the absence of non-
directional sources. This is due to the fact that the presence of an emitter increases
the rank of the covariance matrix by one.Thus

- . —;;- Diversity Techniques




rankR::)=y (19;

If, however, in addition to the directional sources there are also noo-directiona!
- sSources present then the last equation is not quite true. The covariance mairix tcen
is givea by:
. ,
R:I=Rsiy+7 .l . (20)

In that case R.. has full rank (that is rank(R::)=N) aad the following relatiorship is

valid:
ranJ(Rzz—az.l)=M (21)
However, since the presence of noise affects only the diagonal terms of the Rs:-; .
covariance that means that
c;'gi(R::)=:ig£(Rsig)+a'7 (22
therefore
‘igmin(Rz:)=35.’1’:.—.;.—;(R3,'g)+‘72 (23)

Now since i, (R sig)=0 With multiplicity ¥—srthat means
Cigmir;(RI:)zo'z (24

with multiplicity ¥—ar also.

Therefore # can be determined by the eigenvalues of the covariance matrix and
more specifically by the multiplicity of its minimum eigenvalue:

M=N—(multiplicity of min-eigeavalue) | (23)
Now let us consider that the eigendecomposition ha.s been performed:
(zu2) (z227) ... (z; 2, (!M-J-v“u.;-z) e (A ) _ (\26)
where (z,1,) represents the ;* eigenvector and eigenvalue of R,,. Let

sz }32 ceoan ZAH> t\M+‘=.u..=XN=C:
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Then Rzz-l’F'\.'-.!.‘ :

- (Rsiy +€2l}.£;=/\‘».£i

R.n].giz(Al-G'.)-El

It is now clear from £quation-27 in conjunction with Fguation-23 that the eigenvectors --.

corzesponding to the minimum eigenvalue of the Rz- will satisfy:

Rsig.yizg Vig[vai, N

ie. sig"Vaois:=0 (29)

where Vnoise=tr'-’.‘l!-.'-.'""" 2yl
That means that these eigeavectors wil] be orthogozal to tha subspace spanzed by

53
the directiogal sources, thea, these eigenvectors will be orikogonal to them too.

tae columns of R . o, 2ad because that subspace includes tra SPVs correspording to
Thus, for instance, by forming the fuactiopal:
Ro)= S(6)8.v.vE g5 (30)

the well kaowa as MuSIC algorithm is established.

Thus, for a linear array where the only parameter of interest is the azimuth
angle, the above equation is evaluated for all SPV corresponding to angles from 0
to 180" and the directions where that equation becomes zero are the directions of
the incident signals. A better reformulation of the Signal Subspace approach is to
see the source locations as the intersection of the sigaal subspace with the set of all
possible SPVs (array manifold).

Concluding, by the eigenvector decomposition the observation space is partitioned
into two disjoint subspaces: ' .
* the Signal Subspace (SS), with dimension equal to the number of sources,
spanned by the Source Position Vectors (SPV);
e the Noise Subspace (NS), with dimension equal to the number of sensors
minus the number of sources. -
Thus, every vector belonging to the NS is orthogonal to each SPV.

- ~
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8STEERED VECTOR ADAPTIVE ARRAYS

The previous sections addressed the problem of locating 2 number of exitting
souzces. This section is concerned with the problem of isolating an emitiing source
in the presence of interference and pojse aad obtaining information aboyt the
uaknown interference eavironment. An acray scheme capable of isolating an

emitting source is the so called stesred vector adoptive array. In this atray processing

scheme, ap array of N seasors Operates in a completely unkaowa interference

eavironment. Its main fuaction is the adjustment of the array pattern so as to
receive a signal corning from a koown direction, in the presexce of ar unkpown
interferences or jammers (with #>31) which are spatially distributed in unknown
directions. Its aim is the reception of the desired signal and maximum suppression
of uawaznted interfereaces (ideally to zero).

Eowever, this array technique is willing to compromise on izterference
suppression azd allow some interference to Pass al tae output of the array
(con:a.;.iaa.ting the desired signal) in order to obtain maximization of the signal-to-
noise ratio. That is, it does not provide complete suppression of uawanted
iaterfereaces. In addition, the direction of arrival (DOA) of the desired signal
should be knowa a p-iori as accurately as possible since tha pointing errors aSect
significantly the performance of the array. Furthermore, the lazger the power of the
desired signal at the input of the ‘array is the smaller the power of the desired
sigoal is provided at the output of the array. This is kaown as the power inversion
prodlem and it may result in desired-signal canceliation.

A partial solution to the above mentioned problems, is given by the modified
Applebaum loop. This is based on the jdea of filtering the desired signal. Thus, by
forming a covariance matrix which does not include the desired signal one can
make a new adaptive array which is more robust to poiating errors and overcomes
the drawback of Power inversion mentioned above.

All the same, the performance of adaptive arrays is significantly degraded as

the number of jammers increases, with deteriorated results when some of theq are
close together or when they are located at less than half the array beam-width
away from the desired signal. Thus, the performance of adaptive arrays is governed
by the geometry involved in the array and signal environment, as well as by the
Powers of the directional sources,

All the above mensioned problems in conjunction with the resolving power -

limitations of conventional adaptive array techniques make this array scheme
Diversity Technigues

TIRERELT S e maaw s v — T e




incapable of handling mazy real world problems. ,
In this section it will be shown how the concepts of sigaa! subspace methods
caz be exteaded into conventional steered vector adaptive arrays in order
® to analyse their behavior and highlight the problems mentioned above;
* to preseat a new algorithm capable of'receiving a desized signal in the
ptesence of unknown non-coherent interferences and, which at the
same time, is:
* capable of providing completely inte:fezence
cancellation
¢ capable of locating the positions of
interfering sources
o less susceptible to pointing ecrors aad
without the disadvantage of powe: inversion

problems.

9"ARRAY PROCESSING MODELS

Wken dealing with broadband signals the array processor caa usually be
represented by a transfer fuaction as showa in Figure 5¢. However, the traasfer
function is not generally suitable for adaptive processing and, therefore, discrete time
approximations for this model can be established using tapped delay fine (TDL) filters
(Figure 5b), where each of the tap weights can be considered to be adjustable. The
TDL, when it is used for narrowband applications, can be reduced to a narrowband TD?
model which ideally can be represented by a single time delay per channel. This single
time delay per channel can then be approximated by a complex weight in each chaane!
and this last model is known as the single complez weight mode! (Figure 5c).

Finally, in many array applications the direction of arrival of the desired signal is
known or can be measured. In such a case, the time delays needed to align the desired

Diversity Technigues ’ o . : = »



FIGURE-5,
ARRAY PROCESSING MODELS
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sigaal terms in each chanpel cag be computed and this function can be modelled by a
spalia! correction filter as shov

va in Figure 54. Ia the following subsec:io
complex weight model (with or without spatial correction Filter)
In the following two subsections
bedaviour of an array,

zs, the siagle
is going to be used.
the basic concepts necessary o analyse the

.'3
such as array output and array pattern, will be discussed.

d©@. ARRAY oUTPUT — SRy,

Consider the array as shown in Figure 6 at some time 1, Az

will be the contribution of all the z(y ’s
coeIicients, W le=1,2,3,..N.
That is,

this time, the output y(¢) of
the array

weighted by the complex

3’(‘)=§ w,.z, (1) (31)
k=]

or ia more compact form:

W)= y
H)=[z,(1), z,(9),.... 2 ()] T
where

7i(1) is given by cquc%{on 2.26
r=[uw, w,, .., uy §

(32)-

Now the average output power from the array is given by:

Pout =E[ eI I=Ey(9) F (1))
=H o7 .47

Le. Paut =QHR3,_. w (33)

If the incident signals are uncorrelated, then the output from the array can be.

expressed as the sum of powers of the separate sources, that is,

Di&ns’t) Tc-du.u'g-u C ,_ L

[N -l TSR
R et . . ety . - R co ’ U
- - r R -



FIGURE- ¢

ARRAY PROCESSING MODEL * { NARRew BAND)
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€@ : denotes an array element

EBXY :denotes an emitting source . .
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POM:Pd-aut +Ppom ¥ Ppsut : (34)

Pd.a,u:c!cs:'r:d output power =25Rd¢,v_v

out=tolal jammer oulpul power =R

-'-'Z P; where i:{:,...,.‘l}

J Prout= noise oulpul power :2”R,mv_p

where P,

JIE

Equetion 34 can also be written as follows:

Po= 2"Rym  + WFRw o+ R (25

Lz
P = P " 2 , M Hev2 o 2 K a
oul = d'@ ‘Sd) -+ ]g: Pj-(’.—" ﬁj) T oy (38)

If the output signa! to noise plus interferance ratio (5¥12) is defzed as the ratio of
the wazted sizzal power to the tota! unwazied power thaa:

-—vald.

_wHRdd;g _ Pd-(’iﬁid):

= M
nsJ¥ ‘Z Pi.(ggﬁi)z +olufy
=

In the nex: subsection the useful concept of array pattera will be preseated.

@
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